Negative frequency-dependent selection is frequently confounding
Abstract
This preprint has been reviewed and recommended by Peer Community in Evolutionary Biology (<ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://dx.doi.org/10.24072/pci.evolbiol.100024">http://dx.doi.org/10.24072/pci.evolbiol.100024</ext-link>).The existence of persistent genetic variation within natural populations presents an evolutionary problem as natural selection and genetic drift tend to erode genetic diversity. Models of balancing selection were developed to account for the high and sometimes extreme levels of polymorphism found in many natural populations. Negative frequency-dependent selection may be the most powerful selective force maintaining balanced natural polymorphisms but it is also commonly misinterpreted. The aim of this review is to clarify the processes underlying negative frequency-dependent selection, describe classes of natural polymorphisms that can and cannot result from these processes, and discuss observational and experimental data that can aid in accurately identifying the processes that generated or are maintain diversity in nature. Finally, I consider the importance of accurately describing the processes affecting genetic diversity within populations as it relates to research progress.
Related articles
Related articles are currently not available for this article.