Natural selection on plasticity of thermal traits in a highly seasonal environment

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (<ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://dx.doi.org/10.24072/pci.evolbiol.100048">http://dx.doi.org/10.24072/pci.evolbiol.100048</ext-link>). For ectothermic species with broad geographical distributions, latitudinal/altitudinal variation in environmental temperatures (averages and extremes) are expected to shape the evolution of physiological tolerances and the acclimation capacity (i.e., degree of phenotypic plasticity) of natural populations. This can create geographical gradients of selection in which environments with greater thermal variability (e.g., seasonality) tend to favour individuals that maximize performance across a broader range of temperatures compared to more stable environments. Although thermal acclimation capacity plays a fundamental role in this context, it is unknown whether natural selection targets this trait in natural populations. Here we addressed such an important gap in our knowledge by measuring survival, through mark recapture integrated into an information-theoretic approach, as a function of the plasticity of critical thermal limits for activity, behavioural thermal preference and the thermal sensitivity of metabolism in the northernmost population of the four-eyed frogPleurodema thaul. Overall, our results indicate that thermal acclimation in this population is not being targeted by directional selection, although there might be signals of selection on individual traits. According to the most supported models, survival decreased in individuals with less tolerance to cold when cold-acclimated (probably because daily low extremes are frequent during the cooler periods of the year) and increased with body size. However, in both cases, the directional selection estimates were non-significant.

Related articles

Related articles are currently not available for this article.