Structural analysis of SARS-CoV-2 genome and predictions of the human interactome

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Specific elements of viral genomes regulate interactions within host cells. Here, we calculated the secondary structure content of >2000 coronaviruses and computed >100000 human protein interactions with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The genomic regions display different degrees of conservation. SARS-CoV-2 domain encompassing nucleotides 22500 – 23000 is conserved both at the sequence and structural level. The regions upstream and downstream, however, vary significantly. This part codes for the Spike S protein that interacts with the human receptor angiotensin-converting enzyme 2 (ACE2). Thus, variability of Spike S may be connected to different levels of viral entry in human cells within the population.

Our predictions indicate that the 5’ end of SARS-CoV-2 is highly structured and interacts with several human proteins. The binding proteins are involved in viral RNA processing such as double-stranded RNA specific editases and ATP-dependent RNA-helicases and have strong propensity to form stress granules and phase-separated complexes. We propose that these proteins, also implicated in viral infections such as HIV, are selectively recruited by SARS-CoV-2 genome to alter transcriptional and post-transcriptional regulation of host cells and to promote viral replication.

Related articles

Related articles are currently not available for this article.