Atlas of ACE2 gene expression in mammals reveals novel insights in transmisson of SARS-Cov-2
Abstract
Background
COVID-19 has become a worldwide pandemic. It is caused by a novel coronavirus named SARS-CoV-2 with elusive origin. SARS-CoV-2 infects mammalian cells by binding to ACE2, a transmembrane protein. Therefore, the conservation of ACE2 and its expression pattern across mammalian species, which are yet to be comprehensively investigated, may provide valuable insights into tracing potential hosts of SARS-CoV-2.
Methods
We analyzed gene conservation of ACE2 across mammals and collected more than 140 transcriptome datasets from human and common mammalian species, including presumed hosts of SARS-CoV-2 and other animals in close contact with humans. In order to enable comparisons across species and tissues, we used a unified pipeline to quantify and normalize ACE2 expression levels.
Results
We first found high conservation of ACE2 genes among common mammals at both DNA and peptide levels, suggesting that a broad range of mammalian species can potentially be the hosts of SARS-CoV-2. Next, we showed that high level of ACE2 expression in certain human tissues is consistent with clinical symptoms of COVID-19 patients. Furthermore, we observed that ACE2 expressed in a species-specific manner in the mammals examined. Notably, high expression in skin and eyes in cat and dog suggested that these animals may play roles in transmitting SARS-CoV-2 to humans.
Conclusions
Through building the first atlas of ACE2 expression in pets and livestock, we identified species and tissues susceptible to SARS-CoV-2 infection, yielding novel insights into the viral transmission.
Related articles
Related articles are currently not available for this article.