Predicting the Epidemic Curve of the Coronavirus (SARS-CoV-2) Disease (COVID-19) Using Artificial Intelligence

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The aim of our study was to predict the epidemic curves (daily new cases) of COVID-19 pandemic using Artificial Intelligence (AI)-based Recurrent Neural Networks (RNNs), then to compare and validate the predicted models with the observed data. We used the publicly available datasets from the World Health Organization and Johns Hopkins University to create a training dataset, then we used RNNs with gated recurring units (Long Short-Term Memory) to create two prediction models. Information collected in the first t time-steps were aggregated with a fully connected (dense) neural network layer and a consequent regression output layer to determine the next predicted value. We also used Root Mean Squared Logarithmic Errors (RMSLE) to compare the predicted models with the observed data. The result of our study underscores that the COVID-19 pandemic is a propagated source epidemic, therefore repeated peaks on the epidemic curve are to be anticipated. Besides, the errors between the predicted and validated data and trends seems to be low. The influence of this pandemic is significant worldwide and has already impacted our daily life. Decision makers must be aware, that even if strict public health measures are executed and sustained, future peaks of infections are possible.

Related articles

Related articles are currently not available for this article.