Limited SARS-CoV-2 diversity within hosts and following passage in cell culture

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Since the first reports of pneumonia associated with a novel coronavirus (COVID-19) emerged in Wuhan, Hubei province, China, there have been considerable efforts to sequence the causative virus, SARS-CoV-2 (also referred to as hCoV-19) and to make viral genomic information available quickly on shared repositories. As of 30 March 2020, 7,680 consensus sequences have been shared on GISAID, the principal repository for SARS-CoV-2 genetic information. These sequences are primarily consensus sequences from clinical and passaged samples, but few reports have looked at diversity of virus populations within individual hosts or cultures. Understanding such diversity is essential to understanding viral evolutionary dynamics. Here, we characterize within-host viral diversity from a primary isolate and passaged samples, all originally deriving from an individual returning from Wuhan, China, who was diagnosed with COVID-19 and subsequently sampled in Wisconsin, United States. We use a metagenomic approach with Oxford Nanopore Technologies (ONT) GridION in combination with Illumina MiSeq to capture minor within-host frequency variants ≥1%. In a clinical swab obtained from the day of hospital presentation, we identify 15 single nucleotide variants (SNVs) ≥1% frequency, primarily located in the largest gene – ORF1a. While viral diversity is low overall, the dominant genetic signatures are likely secondary to population size changes, with some evidence for mild purifying selection throughout the genome. We see little to no evidence for positive selection or ongoing adaptation of SARS-CoV-2 within cell culture or in the primary isolate evaluated in this study.

Author Summary

Within-host variants are critical for addressing molecular evolution questions, identifying selective pressures imposed by vaccine-induced immunity and antiviral therapeutics, and characterizing interhost dynamics, including the stringency and character of transmission bottlenecks. Here, we sequenced SARS-CoV-2 viruses isolated from a human host and from cell culture on three distinct Vero cell lines using Illumina and ONT technologies. We show that SARS-CoV-2 consensus sequences can remain stable through at least two serial passages on Vero 76 cells, suggesting SARS-CoV-2 can be propagated in cell culture in preparation forin-vitroandin-vivostudies without dramatic alterations of its genotype. However, we emphasize the need to deep-sequence viral stocks prior to use in experiments to characterize sub-consensus diversity that may alter outcomes.

Related articles

Related articles are currently not available for this article.