The genomic variation landscape of globally-circulating clades of SARS-CoV-2 defines a genetic barcoding scheme

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

We describe fifteen major mutation events from 2,058 high-quality SARS-CoV-2 genomes deposited up to March 31st, 2020. These events define five major clades (G, I, S, D and V) of globally-circulating viral populations, representing 85.7% of all sequenced cases, which we can identify using a 10 nucleotide genetic classifier or barcode. We applied this barcode to 4,000 additional genomes deposited between March 31stand April 15thand classified successfully 95.6% of the clades demonstrating the utility of this approach. An analysis of amino acid variation in SARS-CoV-2 ORFs provided evidence of substitution events in the viral proteins involved in both host-entry and genome replication. The systematic monitoring of dynamic changes in the SARS-CoV-2 genomes of circulating virus populations over time can guide therapeutic and prophylactic strategies to manage and contain the virus and, also, with available efficacious antivirals and vaccines, aid in the monitoring of circulating genetic diversity as we proceed towards elimination of the agent. The barcode will add the necessary genetic resolution to facilitate tracking and monitoring of infection clusters to distinguish imported and indigenous cases and thereby aid public health measures seeking to interrupt transmission chains without the requirement for real-time complete genomes sequencing.

Related articles

Related articles are currently not available for this article.