Incidence of COVID-19 and Connections with Air Pollution Exposure: Evidence from the Netherlands
Abstract
The fast spread of severe acute respiratory syndrome coronavirus 2 has resulted in the emergence of several hot-spots around the world. Several of these are located in areas associated with high levels of air pollution. This study investigates the relationship between exposure to particulate matter and COVID-19 incidence in 355 municipalities in the Netherlands. The results show that atmospheric particulate matter with diameter less than 2.5 is a highly significant predictor of the number of confirmed COVID-19 cases and related hospital admissions. The estimates suggest that expected COVID-19 cases increase by nearly 100 percent when pollution concentrations increase by 20 percent. The association between air pollution and case incidence is robust in the presence of data on health-related preconditions, proxies for symptom severity, and demographic control variables. The results are obtained with ground-measurements and satellite-derived measures of atmospheric particulate matter as well as COVID-19 data from alternative dates. The findings call for further investigation into the association between air pollution and SARS-CoV-2 infection risk. If particulate matter plays a significant role in COVID-19 incidence, it has strong implications for the mitigation strategies required to prevent spreading.
Highlights
Background
Research on viral respiratory infections has found that infection risks increase following exposure to high concentrations of particulate matter. Several hot-spots of Severe Acute Respiratory Syndrome Coronavirus 2 infections are in areas associated with high levels of air pollution.
Approach
This study investigates the relationship between exposure to particulate matter and COVID-19 incidence in 355 municipalities in the Netherlands using data on confirmed cases and hospital admissions coded by residence, along with local PM2.5, PM10, population density, demographics and health-related pre-conditions. The analysis utilizes different regression specifications that allow for spatial dependence, nonlinearity, alternative error distributions and outlier treatment.
Results
PM2.5 is a highly significant predictor of the number of confirmed COVID-19 cases and related hospital admissions. Taking the WHO guideline of 10mcg/m3 as a baseline, the estimates suggest that expected COVID-19 cases increase by nearly 100% when pollution concentrations increase by 20%.
Conclusion
The findings call for further investigation into the association between air pollution on SARS-CoV-2 infection risk. If particulate matter plays a significant role in the incidence of COVID-19 disease, it has strong implications for the mitigation strategies required to prevent spreading, particularly in areas that have high levels of pollution.
Related articles
Related articles are currently not available for this article.