Computational methods to develop potential neutralizing antibody Fab region against SARS-CoV-2 as therapeutic and diagnostic tool
Abstract
SARS-CoV-2, a global pandemic originated from Wuhan city of China in the month of December 2019. There is an urgency to identify potential antibodies to neutralize the virus and also as a diagnostic tool candidate. At present palliative treatments using existing antiviral drugs are under trails to treat SARS-CoV-2.Whole Genome sequence of Wuhan market sample of SARS-CoV-2 was obtained from NCBI Gene ID MN908947.3.Spike protein sequence PDB ID 6VSB obtained from RCSB database. Spike protein sequence had shown top V gene match with IGLV1-44*01, IGLV1-47*02 and has VL type chain. Whole Genome sequence had shown top V gene match with IGHV1-38-4*01 and has VH type chain. VD chain had shown link to allele HLA-A0206 80%, HLA-A0217 80%, HLA-A2301 75%, HLA-A0203 75%, HLA-A0202 70% and HLA-A0201 55% of binding levels. Some conserved regions of spike protein had shown strong binding affinity with HLA-A-0*201, HLA-A24, HLA-B-5701 and HLA-B-5703 alpha chains. Synthetic Fab construct BCR type antibody IgG (CR5840) had shown Polyspecific binding activity with spike glycoprotein when compared with available Anti-SARS antibody CR3022.Thus we propose CR5840 Fab constructed antibody as potential neutralizing antibody for SARS-CoV-2. Based on germline analysis we also propose cytotoxic T lymphocyte epitope peptide selective system as effective tool for the development of SARS-CoV-2 vaccine.
Related articles
Related articles are currently not available for this article.