AI based Chest X-Ray (CXR) Scan Texture Analysis Algorithm for Digital Test of COVID-19 Patients
Abstract
Chest Imaging in COVID-19 patient management is becoming an essential tool for controlling the pandemic that is gripping the international community. It is already indicated in patients with COVID-19 and worsening respiratory status. The rapid spread of the pandemic to all continents, albeit with a nonuniform community transmission, necessitates chest imaging for medical triage of patients presenting moderate-severe clinical COVID-19 features. This paper reports the development of innovative machine learning schemes for the analysis of Chest X-Ray (CXR) scan images of COVID-19 patients in almost real-time, demonstrating significantly high accuracy in identifying COVID-19 infection. The performance testing was conducted on a combined dataset comprising CXRs of positive COVID-19 patients, patients with various viral and bacterial infections, as well as persons with a clear chest. The test resulted in successfully distinguishing CXR COVID-19 infection from the other cases with an average accuracy of 94.43%, sensitivity 95% and specificity 93.86%.
Key Strengths
The development of efficient automatic AI texture analysis schemes for classification of chest X-Ray of COVID-19 patients with highest accuracy with equally low false negative and positive rates. Decisions would be supported by visual evidence viewable by clinician and help speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.
Related articles
Related articles are currently not available for this article.