Online COVID-19 diagnosis with chest CT images: Lesion-attention deep neural networks

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Chest computed tomography (CT) scanning is one of the most important technologies for COVID-19 diagnosis and disease monitoring, particularly for early detection of coronavirus. Recent advancements in computer vision motivate more concerted efforts in developing AI-driven diagnostic tools to accommodate the enormous demands for the COVID-19 diagnostic tests globally. To help alleviate burdens on medical systems, we develop a lesion-attention deep neural network (LA-DNN) to predict COVID-19 positive or negative with a richly annotated chest CT image dataset. Based on the textual radiological report accompanied with each CT image, we extract two types of important information for the annotations: One is the indicator of a positive or negative case of COVID-19, and the other is the description of five lesions on the CT images associated with the positive cases. The proposed data-efficient LA-DNN model focuses on the primary task of binary classification for COVID-19 diagnosis, while an auxiliary multi-label learning task is implemented simultaneously to draw the model’s attention to the five lesions associated with COVID-19. The joint task learning process makes it a highly sample-efficient deep neural network that can learn COVID-19 radiology features more effectively with limited but high-quality, rich-information samples. The experimental results show that the area under the curve (AUC) and sensitivity (recall), precision, and accuracy for COVID-19 diagnosis are 94.0%, 88.8%, 87.9%, and 88.6% respectively, which reach the clinical standards for practical use. A free online system is currently alive for fast diagnosis using CT images at the website<ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://www.covidct.cn/">https://www.covidct.cn/</ext-link>, and all codes and datasets are freely accessible at our github address.

Related articles

Related articles are currently not available for this article.