A comparative analysis of statistical methods to estimate the reproduction number in emerging epidemics with implications for the current COVID-19 pandemic

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

As the SARS-CoV-2 pandemic continues its rapid global spread, quantification of local transmission patterns has been, and will continue to be, critical for guiding pandemic response. Understanding the accuracy and limitations of statistical methods to estimate the reproduction number, R0, in the context of emerging epidemics is therefore vital to ensure appropriate interpretation of results and the subsequent implications for control efforts. Using simulated epidemic data we assess the performance of 6 commonly-used statistical methods to estimate R0as they would be applied in a real-time outbreak analysis scenario – fitting to an increasing number of data points over time and with varying levels of random noise in the data. Method comparison was also conducted on empirical outbreak data, using Zika surveillance data from the 2015–2016 epidemic in Latin America and the Caribbean. We find that all methods considered here frequently over-estimate R0 in the early stages of epidemic growth on simulated data, the magnitude of which decreases when fitted to an increasing number of time points. This trend of decreasing bias over time can easily lead to incorrect conclusions about the course of the epidemic or the need for control efforts. We show that true changes in pathogen transmissibility can be difficult to disentangle from changes in methodological accuracy and precision, particularly for data with significant over-dispersion. As localised epidemics of SARS-CoV-2 take hold around the globe, awareness of this trend will be important for appropriately cautious interpretation of results and subsequent guidance for control efforts.

Significance Statement

In line with a real-time outbreak analysis we use simulated epidemic data to assess the performance of 6 commonly-used statistical methods to estimate the reproduction number, R0, at different time points during the epidemic growth phase. We find that estimates of R0are frequently overestimated by these methods in the early stages of epidemic growth, with decreasing bias when fitting to an increasing number of time points. Reductions in R0estimates obtained at sequential time points during early epidemic growth may reflect increased methodological accuracy rather than reductions in pathogen transmissibility or effectiveness of interventions. As SARS-CoV-2 continues its geographic spread, awareness of this bias will be important for appropriate interpretation of results and subsequent guidance for control efforts.

Related articles

Related articles are currently not available for this article.