Intraflagellar transport during the assembly of flagella of different length in Trypanosoma brucei isolated from tsetse flies

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Multicellular organisms assemble cilia and flagella of precise lengths differing from one cell to another, yet little is known about the mechanisms governing these differences. Similarly, protists assemble flagella of different lengths according to the stage of their life cycle. This is the case of Trypanosoma brucei that assembles flagella of 3 to 30 µm during its development in the tsetse fly. It provides an opportunity to examine how cells naturally modulate organelle length. Flagella are constructed by addition of new blocks at their distal end via intraflagellar transport (IFT). Immunofluorescence assays, 3-D electron microscopy and live cell imaging revealed that IFT was present in all life cycle stages. IFT proteins are concentrated at the base, IFT trains are located along doublets 3-4 & 7-8 and travel bidirectionally in the flagellum. Quantitative analysis demonstrated that the total amount of IFT proteins correlates with the length of the flagellum. Surprisingly, the shortest flagellum exhibited a supplementary large amount of dynamic IFT material at its distal end. The contribution of IFT and other factors to the regulation of flagellum length is discussed.

Summary statement

This work investigated the assembly of flagella of different length during the development of Trypanosoma brucei in the tsetse fly, revealing a direct correlation between the amount of intraflagellar transport proteins and flagellum length.

Related articles

Related articles are currently not available for this article.