Epitope-Based Peptide Vaccine Against Severe Acute Respiratory Syndrome-Coronavirus-2 Nucleocapsid Protein: Anin silicoApproach

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

With an increasing fatality rate, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has emerged as a promising threat to human health worldwide. SARS-CoV-2 is a member of theCoronaviridaefamily, which is transmitted from animal to human and because of being contagious, further it transmitted human to human. Recently, the World Health Organization (WHO) has announced the infectious disease caused by SARS-CoV-2, which is known as coronavirus disease-2019 (COVID-2019) as a global pandemic. But, no specific medications are available for the treatment of COVID-19 so far. As a corollary, there is a need for a potential vaccine to impede the progression of the disease. Lately, it has been documented that the nucleocapsid (N) protein of SARS-CoV-2 is responsible for viral replication as well as interferes with host immune responses. We have comparatively analyzed the sequences of N protein of SARS-CoV-2 for the identification of core attributes and analyzed the ancestry through phylogenetic analysis. Subsequently, we have predicted the most immunogenic epitope for T-cell as well as B-cell. Importantly, our investigation mainly focused on major histocompatibility complex (MHC) class I potential peptides and NTASWFTAL interacted with most human leukocyte antigen (HLA) that are encoded by MHC class I molecules. Further, molecular docking analysis unveiled that NTASWFTAL possessed a greater affinity towards HLA and also available in a greater range of the population. Our study provides a consolidated base for vaccine design and we hope that this computational analysis will pave the way for designing novel vaccine candidates.

Related articles

Related articles are currently not available for this article.