Afucosylated immunoglobulin G responses are a hallmark of enveloped virus infections and show an exacerbated phenotype in COVID-19
Abstract
IgG antibodies are crucial for protection against invading pathogens. A highly conserved N-linked glycan within the IgG-Fc-tail, essential for IgG function, shows variable composition in humans. Afucosylated IgG variants are already used in anti-cancer therapeutic antibodies for their elevated binding and killing activity through Fc receptors (FcγRIIIa). Here, we report that afucosylated IgG which are of minor abundance in humans (∼6% of total IgG) are specifically formed against surface epitopes of enveloped viruses after natural infections or immunization with attenuated viruses, while protein subunit immunization does not elicit this low fucose response. This can give beneficial strong responses, but can also go awry, resulting in a cytokine-storm and immune-mediated pathologies. In the case of COVID-19, the critically ill show aggravated afucosylated-IgG responses against the viral spike protein. In contrast, those clearing the infection unaided show higher fucosylation levels of the anti-spike protein IgG. Our findings indicate antibody glycosylation as a potential factor in inflammation and protection in enveloped virus infections including COVID-19.
Related articles
Related articles are currently not available for this article.