A spatial model to optimise predictions of COVID-19 incidence risk in Belgium using symptoms as reported in a large-scale online survey

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Although COVID-19 has been spreading throughout Belgium since February, 2020, its spatial dynamics in Belgium remain poorly understood, due to the limited testing of suspected cases. We analyse data of COVID-19 symptoms, as self-reported in a weekly online survey, which is open to all Belgian citizens. We predict symptoms' incidence using binomial models for spatially discrete data, and we introduce these as a covariate in the spatial analysis of COVID-19 incidence, as reported by the Belgian government during the days following a survey round. The symptoms' incidence predictions explain a significant proportion of the variation in the relative risks based on the confirmed cases, and exceedance probability maps of the symptoms' incidence and the confirmed cases' relative risks pinpoint the same high-risk region. We conclude that these results can be used to develop public monitoring tools in scenarios with limited lab testing capacity, and to supplement test-based information otherwise.

Related articles

Related articles are currently not available for this article.