In silicoProteome analysis of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (2019-nCoV), is a positive-sense, single-stranded RNA coronavirus. The virus is the causative agent of coronavirus disease 2019 (COVID-19) and is contagious through human-to-human transmission. The present study reports sequence analysis, complete coordinate tertiary structure prediction andin silicosequence-based and structure-based functional characterization of full SARS-CoV-2 proteome based on the NCBI reference sequence NC_045512 (29903 bp ss-RNA) which is identical to GenBank entry<ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="gen" xlink:href="MN908947">MN908947</ext-link>and<ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="gen" xlink:href="MT415321">MT415321</ext-link>. The proteome includes 12 major proteins namely orf1ab polyprotein (includes 15 proteins), surface glycoprotein, ORF3a protein, envelope protein, membrane glycoprotein, ORF6 protein, ORF7a protein, orf7b, ORF8, Nucleocapsid phosphoprotein and ORF10 protein. Each protein of orf1ab polyprotein group has been studied separately. A total of 25 polypeptides have been analyzed out of which 15 proteins are not yet having experimental structures and only 10 are having experimental structures with known PDB IDs. Out of 15 newly predicted structures six (6) were predicted using comparative modeling and nine (09) proteins having no significant similarity with so far available PDB structures were modeled usingab-initiomodeling. Structure verification using recent tools QMEANDisCo 4.0.0 and ProQ3 for global and local (per-residue) quality estimates indicate that the all-atom model of tertiary structure of high quality and may be useful for structure-based drug designing targets. The study has identified nine major targets (spike protein, envelop protein, membrane protein, nucleocapsid protein, 2’-O-ribose methyltransferase, endoRNAse, 3’-to-5’ exonuclease, RNA-dependent RNA polymerase and helicase) for which drug design targets could be considered. There are other 16 nonstructural proteins (NSPs), which may also be percieved from the drug design angle. The protein structures have been deposited to ModelArchive. Tunnel analysis revealed the presence of large number of tunnels in NSP3, ORF 6 protein and membrane glycoprotein indicating a large number of transport pathways for small ligands influencing their reactivity.
Related articles
Related articles are currently not available for this article.