COVID-19 (SARS-CoV-2) Ventilator Resource Management Using a Network Optimization Model and Predictive System Demand
Abstract
The COVID-19 (SARS-CoV-2) pandemic is overwhelming global healthcare delivery systems due to the exponential spike in cases requiring specialty tests, facilities and equipment, including complex, precision devices like ventilators. In particular, the surge in critically ill patients has revealed a significant deficiency in regional availability of respiratory care ventilators. The authors offer a mathematical framework for ventilator distribution under scarcity conditions using an optimized network model and solver. The framework is interoperable with existing COVID-19 healthcare demand models and scales for different user-defined system sizes, including hospital networks, city, state, regional and national-scale prioritization. The authors’ approach improves current capabilities for medical device resource management within the existing incident command system while accounting for availability of devices, ventilation treatment time periods, disinfection and cleaning between patients, as well as shipping logistics time. The authors present a proof of concept using a high fidelity COVID-19 data set from Colorado, discusses how to scale nationally, and emphasizes the importance of applying ethical human-in-the-loop decision making when using this or similar approaches to managing medical device resources during epidemic emergencies.
Related articles
Related articles are currently not available for this article.