ENVIRONMENTAL SAFETY EVALUATION OF THE PROTECTION AND ISOLATION SYSTEM FOR PATIENTS WITH COVID-19

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Background

SARS-CoV-2 has high transmissibility through respiratory droplets and aerosol, making COVID-19 a worldwide pandemic. In its severe form, patients progress to respiratory failure. Non-invasive mechanical ventilation restrictions and early orotracheal intubation have collapsed health systems due to insufficient intensive care unit beds and mechanical ventilators. COVID-19 dedicated healthcare professionals have high infection rates. This publication describes experimental testing of the Protection and Isolation System for Patients with COVID-19 (PISP/COVID-19).

Method

PISP/COVID-19 is a disposable transparent polyethylene plastic that covers the patient’s entire hospital bed, with its internal air aspirated by the hospital’s vacuum system attached to a microparticle filter. Experiments validated PISP/COVID-19’s ability to block aerosolized microparticles dissemination. Caffeine was used as a molecular marker, with leakage evaluation through sensors analysis using nuclear magnetic resonance spectroscopy. The biological marker was synthetic SARS-CoV-2 RNA, using Reverse Transcription Polymerase Chain Reaction (RT-PCR) as the detection method.

Results

PISP/COVID-19 was effective against molecular and biological markers environmental dispersion in simulations of non-invasive ventilation, high-flow nasal cannula oxygen and mechanical ventilation isolation. Caffeine was not detected in any of the sensors positioned at points outside the PISP/COVID-19. The ability of PISP/COVID-19 to retain virus particles and protect the surrounding environment was confirmed by detection and gradients quantification of synthetic SARS-CoV-2 RNA by RT-PCR.

Conclusion

PISP/COVID-19 was effective in the retention of the molecular and biological markers in all tested simulations. Considering the current pandemic, PISP/COVID-19 might increase the use of non-invasive ventilation, high-flow nasal cannula oxygen and provide additional protection to healthcare professionals.

Related articles

Related articles are currently not available for this article.