SARS-CoV-2 ORF8 can fold into human factor 1 catalytic domain binding site on complement C3b: Predict functional mimicry

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Pathogens are often known to use host factor mimicry to take evolutionary advantage. As the function of the non-structural ORF8 protein of SARS-CoV-2 in the context of host-pathogen relationship is still obscure, we investigated its role in host factor mimicry using computational protein modelling techniques. Modest sequence similarity of ORF8 of SARS-CoV-2 with the substrate binding site within the C-terminus serine-protease catalytic domain of human complement factor 1 (F1; PDB ID: 2XRC), prompted us to verify their resemblance at the structural level. The modelled ORF8 protein was found to superimpose on the F1 fragment. Further, protein-protein interaction simulation confirmed ORF8 binding to C3b, an endogenous substrate of F1, via F1-interacting region on C3b. Docking results suggest ORF8 to occupy the binding groove adjacent to the conserved “arginine-serine” (RS) F1-mediated cleavage sites on C3b. Comparative H-bond interaction dynamics indicated ORF8/C3b binding to be of higher affinity than the F1/C3b interaction. Hence, ORF8 is predicted to inhibit C3b proteolysis by competing with F1 for C3b binding using molecular mimicry with a possibility of triggering unregulated complement activation. This could offer a mechanistic premise for the unrestrained complement activation observed in large number of SARS-CoV-2 infected patients.

Related articles

Related articles are currently not available for this article.