Age-dependent assessment of genes involved in cellular senescence, telomere and mitochondrial pathways in human lung tissue of smokers, COPD and IPF: Associations with SARS-CoV-2 COVID-19 ACE2-TMPRSS2-Furin-DPP4 axis

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Aging is one of the key contributing factors for chronic obstructive pulmonary diseases (COPD) and other chronic inflammatory lung diseases. Cigarette smoke is a major etiological risk factor that has been shown to alter cellular processes involving mitochondrial function, cellular senescence and telomeric length. Here we determined how aging contribute to the alteration in the gene expression of above mentioned cellular processes that play an important role in the progression of COPD and IPF. We hypothesized that aging may differentially alter the expression of mitochondrial, cellular senescence and telomere genes in smokers and patients with COPD and IPF compared to non-smokers. Total RNA from human lung tissues from non-smokers, smokers, and patients with COPD and IPF were processed and analyzed based on their ages (younger: <55 yrs and older: >55 yrs). NanoString nCounter panel was used to analyze the gene expression profiles using a custom designed codeset containing 112 genes including 6 housekeeping controls (mitochondrial biogenesis and function, cellular senescence, telomere replication and maintenance). mRNA counts were normalized, log2 transformed for differential expression analysis using linear models in the limma package (R/Bioconductor). Data from non-smokers, smokers and patients with COPD and IPF were analyzed based on the age groups (pairwise comparisons between younger vs. older groups). Several genes were differentially expressed in younger and older smokers, and patients with COPD and IPF compared to non-smokers which were part of the mitochondrial biogenesis/function (HSPD1, FEN1, COX18, COX10, UCP2 & 3), cellular senescence (PCNA, PTEN, KLOTHO, CDKN1C, TNKS2, NFATC1 & 2, GADD45A) and telomere replication/maintenance (PARP1, SIRT6, NBN, TERT, RAD17, SLX4, HAT1) target genes. Interestingly, NOX4 and TNKS2 were increased in the young IPF as compared to the young COPD patients. Genes in the mitochondrial dynamics and other quality control mechanisms like FIS1 and RHOT2 were decreased in young IPF compared to their age matched COPD subjects. ERCC1 (Excision Repair Cross-Complementation Group 1) and GADD45B were higher in young COPD as compared to IPF. Aging plays an important role in various infectious diseases. Elderly patients with chronic lung disease and smokers were found to have high incidence and mortality rates in the current pandemic of SARS-CoV-2 infection. Immunoblot analysis in the lung homogenates of smokers, COPD and IPF subjects revealed increased protein abundance of important proteases and spike proteins like TMPRSS2, furin and DPP4 in association with a slight increase in SARS-CoV-2 receptor ACE2 levels. This may further strengthen the observation that smokers, COPD and IPF subjects are more prone to COVID-19 infection. Overall, these findings suggest that altered transcription of target genes that regulate mitochondrial function, cellular senescence, and telomere attrition add to the pathobiology of lung aging in COPD and IPF and other smoking-related chronic lung disease in associated with alterations in SARS-CoV-2 ACE2-TMPRSS2-Furin-DPP4 axis for COVID-19 infection.

Related articles

Related articles are currently not available for this article.