Fluorescence Microscopy Datasets for Training Deep Neural Networks

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Background

Fluorescence microscopy is an important technique in many areas of biological research. Two factors which limit the usefulness and performance of fluorescence microscopy are photobleaching of fluorescent probes during imaging, and, when imaging live cells, phototoxicity caused by light exposure. Recently developed methods in machine learning are able to greatly improve the signal to noise ratio of acquired images. This allows researchers to record images with much shorter exposure times, which in turn minimizes photobleaching and phototoxicity by reducing the dose of light reaching the sample.

Findings

To employ deep learning methods, a large amount of data is needed to train the underlying convolutional neural network. One way to do this involves use of pairs of fluorescence microscopy images acquired with long and short exposure times. We provide high quality data sets which can be used to train and evaluate deep learning methods under development.

Conclusion

The availability of high quality data is vital for training convolutional neural networks which are used in current machine learning approaches.

Related articles

Related articles are currently not available for this article.