A novel comprehensive metric to assess COVID-19 testing outcomes: Effects of geography, government, and policy response

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Testing and case identification are key strategies in controlling the COVID-19 pandemic. Contact tracing and isolation are only possible if cases have been identified. The effectiveness of testing must be tracked, but a single comprehensive metric is not available to assess testing effectiveness, and no timely estimates of case detection rate are available globally, making inter-country comparisons difficult. The purpose of this paper was to propose a single, comprehensive metric, called the COVID-19 Testing Index (CovTI) scaled from 0 to 100, that incorporated several testing metrics. The index was based on case-fatality rate, test positivity rate, active cases, and an estimate of the detection rate. It used parsimonious modeling to estimate the true total number of COVID-19 cases based on deaths, testing, health system capacity, and government transparency. Publicly reported data from 188 countries and territories were included in the index. Estimates of detection rates aligned with previous estimates in literature (R2=0.97). As of June 3, 2020, the states with the highest CovTI included Iceland, Australia, New Zealand, Hong Kong, and Thailand, and some island nations. Globally, CovTI increased from April 20 <inline-formula><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20133389v1_inline1.gif"/></alternatives></inline-formula> to June 3 <inline-formula><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20133389v1_inline2.gif"/></alternatives></inline-formula> but declined in ca. 10% of countries. Bivariate analyses showed the average in countries with open public testing policies (59.7, 95% CI 55.6-63.8) were significantly higher than countries with no testing policy (30.2, 95% CI 18.1-42.3) (p<0.0001). A multiple linear regression model assessed the association of independent grouping variables with CovTI. Open public testing and extensive contact tracing were shown to significantly increase CovTI, after adjusting for extrinsic factors, including geographic isolation and centralized forms of government. This tool may be useful for policymakers to assess testing effectiveness, inform decisions, and identify model countries. It may also serve as a tool for researchers in analyses by combining it with other databases.

Related articles

Related articles are currently not available for this article.