SARS-CoV-2-specific antibody detection for sero-epidemiology: a multiplex analysis approach accounting for accurate seroprevalence

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Background

The COVID-19 pandemic demands detailed understanding of the kinetics of antibody production induced by infection with SARS-CoV-2. We aimed to develop a high throughput multiplex assay to detect antibodies to SARS-CoV-2 to assess immunity to the virus in the general population.

Methods

Spike protein subunits S1 and RBD, and Nucleoprotein were coupled to distinct microspheres. Sera collected before the emergence of SARS-CoV-2 (N=224), and of non-SARS-CoV-2 influenza-like illness (N=184), and laboratory-confirmed cases of SARS-CoV-2 infection (N=115) with various severity of COVID-19 were tested for SARS-CoV-2-specific concentrations of IgG.

Results

Our assay discriminated SARS-CoV-2-induced antibodies and those induced by other viruses. The assay obtained a specificity between 95.1 and 99.0% with a sensitivity ranging from 83.6-95.7%. By merging the test results for all 3 antigens a specificity of 100% was achieved with a sensitivity of at least 90%. Hospitalized COVID-19 patients developed higher IgG concentrations and the rate of IgG production increased faster compared to non-hospitalized cases.

Conclusions

The bead-based serological assay for quantitation of SARS-CoV-2-specific antibodies proved to be robust and can be conducted in many laboratories. Finally, we demonstrated that testing of antibodies against different antigens increases sensitivity and specificity compared to single antigen-specific IgG determination.

Related articles

Related articles are currently not available for this article.