Phylogenomics and phylodynamics of SARS-CoV-2 retrieved genomes from India
Abstract
The ongoing SARS-CoV-2 pandemic is one of the biggest outbreaks after the Spanish flu of 1918. Understanding the epidemiology of viral outbreaks is the first step towards vaccine development programs. This is the first phylodynamics study attempted on of SARS-CoV-2 genomes from India to infer its current evolution in the context of an ongoing pandemic. Out of 286 retrieved SARS-CoV-2 whole genomes from India, 138 haplotypes were generated and analyzed. Median-joining network was built to investigate the relatedness of SARS-CoV-2 haplotypes in India. The BDSIR package of BEAST2 was used to calculate the reproduction number (R0) and the infectious rate of the virus. Past and current population trend was investigated using the stamp date method in coalescent Bayesian skyline plot, implemented in BEAST2 and by exponential growth prior in BEAST 1.10.4. Median-joining network reveals two distinct ancestral clusters A and B showing genetic affinities with Wuhan outbreak sample. The network also illustrates the autochthonous development of isolates in a few instances. High basic reproduction number of SARS-nCoV-2 in India points towards the phase of active community transmission. The Bayesian skyline plot revel exponential rise in the effective population size (Ne) of Indian isolates from the first week of January to the first week of April 2020. More genome sequencing and analyses of the virus will be required in coming days to monitor COVID19 after the upliftment of lock down in India.
Related articles
Related articles are currently not available for this article.