Forecasting COVID-19 and Analyzing the Effect of Government Interventions
Abstract
One key question in the ongoing COVID-19 pandemic is understanding the impact of government interventions, and when society can return to normal. To this end, we develop DELPHI, a novel epidemiological model that captures the effect of under-detection and government intervention. We applied DELPHI across 167 geographical areas since early April, and recorded 6% and 11% two-week out-of-sample Median Absolute Percentage Error on cases and deaths respectively. Furthermore, DELPHI successfully predicted the large-scale epidemics in many areas months before, including US, UK and Russia. Using our flexible formulation of government intervention in DELPHI, we are able to understand how government interventions impacted the pandemic’s spread. In particular, DELPHI predicts that in absence of any interventions, over 14 million individuals would have perished by May 17th, while 280,000 current deaths could have been avoided if interventions around the world started one week earlier. Furthermore, we find mass gathering restrictions and school closings on average reduced infection rates the most, at 29.9 ± 6.9% and 17.3 ± 6.7%, respectively. The most stringent policy, stay-at-home, on average reduced the infection rate by 74.4 ± 3.7% from baseline across countries that implemented it. We also illustrate how DELPHI can be extended to provide insights on reopening societies under different policies.
Related articles
Related articles are currently not available for this article.