A facile Q-RT-PCR assay for monitoring SARS-CoV-2 growth in cell culture

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the ongoing COVID-19 pandemic, has infected millions within just a few months and is continuing to spread around the globe causing immense respiratory disease and mortality. Assays to monitor SARS-CoV-2 growth depend on time-consuming and costly RNA extraction steps, hampering progress in basic research and drug development efforts. Here we developed a facile Q-RT-PCR assay that bypasses viral RNA extraction steps and can monitor SARS-CoV-2 replication kinetics from a small amount of cell culture supernatants. Using this assay, we screened the activities of a number of entry, SARS-CoV-2- and HIV-1-specific inhibitors in a proof of concept study. In line with previous studies which has shown that processing of the viral Spike protein by cellular proteases and endosomal fusion are required for entry, we found that E64D and apilimod potently decreased the amount of SARS-CoV-2 RNA in cell culture supernatants with minimal cytotoxicity. Surprisingly, we found that macropinocytosis inhibitor EIPA similarly decreased viral RNA in supernatants suggesting that entry may additionally be mediated by an alternative pathway. HIV-1-specific inhibitors nevirapine (an NNRTI), amprenavir (a protease inhibitor), and ALLINI-2 (an allosteric integrase inhibitor) modestly inhibited SARS-CoV-2 replication, albeit the IC50values were much higher than that required for HIV-1. Taken together, this facile assay will undoubtedly expedite basic SARS-CoV-2 research, be amenable to mid-throughput screens to identify chemical inhibitors of SARS-CoV-2, and be applicable to a broad number of RNA and DNA viruses.

Importance

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the COVID-19 pandemic, has quickly become a major global health problem causing immense respiratory disease and social and economic disruptions. Conventional assays that monitor SARS-CoV-2 growth in cell culture rely on costly and time-consuming RNA extraction procedures, hampering progress in basic SARS-CoV-2 research and development of effective therapeutics. Here we developed a facile Q-RT-PCR assay to monitor SARS-CoV-2 growth in cell culture supernatants that does not necessitate RNA extraction, and is as accurate and sensitive as existing methods. In a proof-of-concept screen, we found that E64D, apilimod, EIPA and remdesivir can substantially impede SARS-Cov-2 replication providing novel insight into viral entry and replication mechanisms. This facile approach will undoubtedly expedite basic SARS-CoV-2 research, be amenable to screening platforms to identify therapeutics against SARS-CoV-2 and can be adapted to numerous other RNA and DNA viruses.

Related articles

Related articles are currently not available for this article.