Development of RNA-based assay for rapid detection of SARS-CoV-2 in clinical samples
Abstract
The ongoing spread of pandemic coronavirus disease (COVID-19) is caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). In the lack of specific drugs or vaccines for SARS-CoV-2, demands rapid diagnosis and management are crucial for controlling the outbreak in the community. Here we report the development of the first rapid-colorimetric assay capable of detecting SARS-CoV-2 in the human nasopharyngeal RNA sample in less than 30 minutes. We utilized a nanomaterial-based optical sensing platform to detect RNA-dependent RNA polymerase (RdRp) gene of SARS-CoV-2, where the formation of oligo probe-target hybrid led to salt-induced aggregation and changes in gold-colloid color from pink to blue in visible range. Accordingly, we found a change in colloid color from pink to blue in assay containing nasopharyngeal RNA sample from the subject with clinically diagnosed COVID-19. The colloid retained pink color when the test includes samples from COVID-19 negative subjects or human papillomavirus (HPV) infected women. The results were validated using nasopharangeal RNA samples from suspected COVID-19 subjects (n=136). Using RT-PCR as gold standard, the assay was found to have 85.29% sensitivity and 94.12% specificity. The optimized method has detection limit as little as 0.5 ng of SARS-CoV-2 RNA. Overall, the developed assay rapidly detects SARS-CoV-2 RNA in clinical samples in a cost-effective manner and would be useful in pandemic management by facilitating mass screening.
Related articles
Related articles are currently not available for this article.