A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 within nasopharyngeal and oropharyngeal swabs at Hampshire Hospitals NHS Foundation Trust

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The COVID-19 pandemic has illustrated the importance of rapid, accurate diagnostic testing for the effective triaging and cohorting of patients and timely tracking and tracing of cases. However, a surge in diagnostic testing quickly resulted in worldwide competition for the same sample preparation and real-time RT-PCR diagnostic reagents (rRT-PCR). Consequently, Hampshire Hospitals NHS Foundation Trust, UK sought to diversify their diagnostic portfolio by exploring alternative amplification chemistries including those that permit direct testing without RNA extraction. This study describes the validation of a SARS-CoV-2 RT-LAMP assay, which is an isothermal, autocycling, strand-displacement nucleic acid amplification technique which can be performed on extracted RNA (RNA RT-LAMP) or directly from swab (Direct RT-LAMP). Analytical specificity (ASp) of this new RT-LAMP assay was 100% and analytical sensitivity (ASe) was between 1⨯101and 1⨯102copies when using a synthetic DNA target. The overall diagnostic sensitivity (DSe) and specificity (DSp) of RNA RT-LAMP was 97% and 99% respectively, relative to the standard of care (SoC) rRT-PCR. When a CTcut-off of 33 was employed, above which increasingly evidence suggests there is a very low risk of patients shedding infectious virus, the diagnostic sensitivity was 100%. The DSe and DSp of Direct-RT-LAMP was 67% and 97%, respectively. When setting CTcut-offs of ≤33 and ≤25, the DSe increased to 75% and 100%, respectively. Time from swab-to-result for a strong positive sample (CT< 25) was < 15 minutes. We propose that RNA RT-LAMP could replace rRT-PCR where there is a need for increase in throughput, whereas Direct RT-LAMP could be used as a screening tool for triaging patients into appropriate hospitals wards, at GP surgeries and in care homes, or for population screening to identify super shedders. Direct RT-LAMP could also be used during times of high prevalence to save critical extraction and rRT-PCR reagents by screening out those strong positives from diagnostic pipelines.

Related articles

Related articles are currently not available for this article.