Sub-epidemic model forecasts for COVID-19 pandemic spread in the USA and European hotspots, February-May 2020

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Mathematical models have been widely used to understand the dynamics of the ongoing coronavirus disease 2019 (COVID-19) pandemic as well as to predict future trends and assess intervention strategies. The asynchronicity of infection patterns during this pandemic illustrates the need for models that can capture dynamics beyond a single-peak trajectory to forecast the worldwide spread and for the spread within nations and within other sub-regions at various geographic scales. Here, we demonstrate a five-parameter sub-epidemic wave modeling framework that provides a simple characterization of unfolding trajectories of COVID-19 epidemics that are progressing across the world at different spatial scales. We calibrate the model to daily reported COVID-19 incidence data to generate six sequential weekly forecasts for five European countries and five hotspot states within the United States. The sub-epidemic approach captures the rise to an initial peak followed by a wide range of post-peak behavior, ranging from a typical decline to a steady incidence level to repeated small waves for sub-epidemic outbreaks. We show that the sub-epidemic model outperforms a three-parameter Richards model, in terms of calibration and forecasting performance, and yields excellent short- and intermediate-term forecasts that are not attainable with other single-peak transmission models of similar complexity. Overall, this approach predicts that a relaxation of social distancing measures would result in continuing sub-epidemics and ongoing endemic transmission. We illustrate how this view of the epidemic could help data scientists and policymakers better understand and predict the underlying transmission dynamics of COVID-19, as early detection of potential sub-epidemics can inform model-based decisions for tighter distancing controls.

Related articles

Related articles are currently not available for this article.