A Fluorescence-based High Throughput-Screening assay for the SARS-CoV RNA synthesis complex

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emergence in 2003 introduced the first serious human coronavirus pathogen to an unprepared world. To control emerging viruses, existing successful anti(retro)viral therapies can inspire antiviral strategies, as conserved viral enzymes (eg., viral proteases and RNA-dependent RNA polymerases) represent targets of choice. Since 2003, much effort has been expended in the characterization of the SARS-CoV replication/transcription machinery. Until recently, a pure and highly active preparation of SARS-CoV recombinant RNA synthesis machinery was not available, impeding target-based high throughput screening of drug candidates against this viral family. The current Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic revealed a new pathogen whose RNA synthesis machinery is highly (>96% aa identity) homologous to SARS-CoV. This phylogenetic relatedness highlights the potential use of conserved replication enzymes to discover inhibitors against this significant pathogen, which in turn, contributes to scientific preparedness against emerging viruses. Here, we report the use of a purified and highly active SARS-CoV replication/transcription complex (RTC) to set-up a high-throughput screening of Coronavirus RNA synthesis inhibitors. The screening of a small (1,520 compounds) chemical library of FDA-approved drugs demonstrates the robustness of our assay and will allow to speed-up drug repositioning or novel drug discovery against the SARS-CoV-2.

Principle of SARS-CoV RNA synthesis detection by a fluorescence-based high throughput screening assay

<fig id="ufig1" position="float" fig-type="figure" orientation="portrait"><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="192005v1_ufig1" position="float" orientation="portrait"/></fig>

Highlights

  • - A new SARS-CoV non radioactive RNA polymerase assay is described

  • - The robotized assay is suitable to identify RdRp inhibitors based on HTS

Related articles

Related articles are currently not available for this article.