Evaluation of diversity levels of the integrase gene sequences coming from HIV-1 virus, supporting the lack of target specificity of ivermectinversusthe integrase-importin complex in SARS-CoV-2 infection

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Therapies with new drugs have been appearing in tests worldwide as potential inhibitors of sars-cov-2 virus replication. Recently, one of these drugs, Ivermectin, was reported as an inhibitor of the nuclear import of HIV-1 proteinsin vitro, soon becoming the target of an international prospecting work (not yet published), with patients tested for COVID-19. However, understanding the evolutionary aspects of the biological components involved in the complex drug-nuclear import helps in understanding how these relationships exist in the deactivation of viral infections. Thus, 153 sequences of the HIV-1 integrase gene were analyzed for their genetic structure and molecular diversity and the presence of two distinct groups for the Gene and not only one, was detected; As well as different degrees of structuring for each of these groups. These results support the interpretation of the lack of conservation of the HIV-1 gene and that the number of existing polymorphisms, only for this structure of the complex, implies the non-efficiency of a drug at population levels. Thus, the molecular diversity found in HIV-1 can be extrapolated to other viruses, such as Including, SARS-CoV-2 and the functionality of the drug, interacting with the integrase-importin complex, can be further decreased.

Related articles

Related articles are currently not available for this article.