A human disease model of SARS-CoV-2-induced lung injury and immune responses with a microengineered organ chip

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that seriously endangers human health. There is an urgent need to build physiological relevant human models for deep understanding the complex organ-level disease processes and facilitating effective therapeutics for COVID-19. Here, we first report the use of microengineered alveolus chip to create a human disease model of lung injury and immune responses induced by native SARS-CoV-2 at organ-level. This biomimetic system is able to reconstitute the key features of human alveolar-capillary barrier by co-culture of alveolar epithelial and microvascular endothelial cells under microfluidic flow. The epithelial cells on chip showed higher susceptibility to SARS-CoV-2 infection than endothelial cells identified by viral spike protein expression. Transcriptional analysis showed distinct responses of two cell types to SARS-CoV-2 infection, including activated type I interferon (IFN-I) signaling pathway in epithelium and activated JAK-STAT signaling pathway in endothelium. Notably, in the presence of circulating immune cells, a series of alveolar pathological changes were observed, including the detachment of endothelial cells, recruitment of immune cells, and increased production of inflammatory cytokines (IL-6, IL-8, IL-1β and TNF-α). These new findings revealed a crucial role of immune cells in mediating lung injury and exacerbated inflammation. Treatment with antiviral compound remdesivir could suppress viral copy and alleviate the disruption of alveolar barrier integrity induced by viral infection. This bioengineered human organ chip system can closely mirror human-relevant lung pathogenesis and immune responses to SARS-CoV-2 infection, not possible by otherin vitromodels, which provides a promising and alternative platform for COVID-19 research and preclinical trials.

Related articles

Related articles are currently not available for this article.