PAN-INDIA 1000 SARS-CoV-2 RNA Genome Sequencing Reveals Important Insights into the Outbreak

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The PAN-INDIA 1000 SARS-CoV-2 RNA Genome Sequencing Consortium has achieved its initial goal of completing the sequencing of 1000 SARS-CoV-2 genomes from nasopharyngeal and oropharyngeal swabs collected from individuals testing positive for COVID-19 by Real Time PCR. The samples were collected across 10 states covering different zones within India. Given the importance of this information for public health response initiatives investigating transmission of COVID-19, the sequence data is being released in GISAID database. This information will improve our understanding on how the virus is spreading, ultimately helping to interrupt the transmission chains, prevent new cases of infection, and provide impetus to research on intervention measures. This will also provide us with information on evolution of the virus, genetic predisposition (if any) and adaptation to human hosts.

One thousand and fifty two sequences were used for phylodynamic, temporal and geographic mutation patterns and haplotype network analyses. Initial results indicate that multiple lineages of SARS-CoV-2 are circulating in India, probably introduced by travel from Europe, USA and East Asia. A2a (20A/B/C) was found to be predominant, along with few parental haplotypes 19A/B. In particular, there is a predominance of the D614G mutation, which is found to be emerging in almost all regions of the country. Additionally, mutations in important regions of the viral genome with significant geographical clustering have also been observed. The temporal haplotype diversities landscape in each region appears to be similar pan India, with haplotype diversities peaking between March-May, while by June A2a (20A/B/C) emerged as the predominant one. Within haplotypes, different states appear to have different proportions. Temporal and geographic patterns in the sequences obtained reveal interesting clustering of mutations. Some mutations are present at particularly high frequencies in one state as compared to others. The negative estimate Tajimas D (D = −2.26817) is consistent with the rapid expansion of SARS-CoV-2 population in India. Detailed mutational analysis across India to understand the gradual emergence of mutants at different regions of the country and its possible implication will help in better disease management.

Related articles

Related articles are currently not available for this article.