Emergent properties of a mitotic Kif18b-MCAK-EB network

This article has 4 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The precise regulation of microtubule length during mitosis is essential to assemble and position the mitotic spindle and segregate chromosomes. Prior work has identified key molecular players in this process, including the kinesin-18 Kif18b and the kinesin-13 Kif2C/MCAK, which both promote microtubule depolymerization. MCAK acts as a potent microtubule depolymerase diffusing short distances on microtubules, while Kif18b is a mitotic processive motor with weak depolymerase activity. However the individual activities of these factors cannot explain the dramatic increase in microtubule dynamics in mitosis. Usingin vitroreconstitution and single molecule imaging, we demonstrate that Kif18b, MCAK and the plus-end tracking protein EB3 act in an integrated manner to potently promote microtubule depolymerization. We find Kif18b acts as a microtubule plus end delivery factor for its cargo MCAK, and that Kif18b also promotes EB accumulation to plus ends independently of lattice nucleotide state. Together, our work defines the mechanistic basis for a cooperative Kif18b-EB-MCAK network with emergent properties, that acts to efficiently shorten microtubules in mitosis.

Related articles

Related articles are currently not available for this article.