A multi-hierarchical approach reveals D-serine as a hidden substrate of sodium-coupled monocarboxylate transporters

This article has 9 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While D-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, andex vivotransport analyses, we have identified two types of renal D-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a D-serine transporter previously uncharacterized in the kidney and discovered D-serine as a noncanonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal D-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.

Related articles

Related articles are currently not available for this article.