Precise Prediction of COVID-19 in Chest X-Ray Images Using KE Sieve Algorithm

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The novel coronavirus (COVID-19) pandemic is pressurizing the healthcare systems across the globe and few of them are on the verge of failing. The detection of this virus as early as possible will help in contaminating the spread of it as the virus is mutating itself as fast as possible and currently there are about 4,300 strains of the virus according to the reports. Clinical studies have shown that most of the COVID-19 patients suffer from a lung infection similar to influenza. So, it is possible to diagnose lung infection using imaging techniques. Although a chest computed tomography (CT) scan has been shown to be an effective imaging technique for lung-related disease diagnosis, chest X-ray is more widely available across the hospitals due to its considerably lower cost and faster imaging time than CT scan. The advancements in the area of machine learning and pattern recognition has resulted in intelligent systems that analyze CT Scans or X-ray images and classify between pneumonia and normal patients. This paper proposes KE Sieve Neural Network architecture, which helps in the rapid diagnosis of COVID-19 using chest X-ray images. This architecture is achieving an accuracy of 98.49%. This noninvasive prediction method can assist the doctors in this pandemic and reduce the stress on health care systems.

Related articles

Related articles are currently not available for this article.