The Role of Machine Learning Techniques to Tackle COVID-19 Crisis: A Systematic Review

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Background

The novel coronavirus responsible for COVID-19 has caused havoc with patients presenting a spectrum of complications forcing the healthcare experts around the globe to explore new technological solutions, and treatment plans. Machine learning (ML) based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize them in response to the challenges posed by the COVID-19 pandemic.

Objective

The objective of this study is to conduct a systematic literature review on the role of ML as a comprehensive and decisive technology to fight the COVID-19 crisis in the arena of epidemiology, diagnosis, and disease progression.

Methods

A systematic search in PubMed, Web of Science, and CINAHL databases was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines to identify all potentially relevant studies published and made available between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and ML. A total of 128 qualified articles were reviewed and analyzed based on the study objectives.

Results

The 128 publications selected were classified into three themes based on ML applications employed to combat the COVID-19 crisis: Computational Epidemiology (CE), Early Detection and Diagnosis (EDD), and Disease Progression (DP). Of the 128 studies, 70 focused on predicting the outbreak, the impact of containment policies, and potential drug discoveries, which were grouped into the CE theme. For the EDD, we grouped forty studies that applied ML techniques to detect the presence of COVID-19 using the patients’ radiological images or lab results. Eighteen publications that focused on predicting the disease progression, outcomes (recovery and mortality), Length of Stay (LOS), and number of Intensive Care Unit (ICU) days for COVID-19 positive patients were classified under the DP theme.

Conclusions

In this systematic review, we assembled the current COVID-19 literature that utilized ML methods to provide insights into the COVID-19 themes, highlighting the important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.

Related articles

Related articles are currently not available for this article.