Transfer learning to detect COVID-19 automatically from X-ray images, using convolutional neural networks

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Novel coronavirus pneumonia (COVID-19) is a contagious disease that has already caused thousands of deaths and infected millions of people worldwide. Thus, all technological gadgets that allow the fast detection of COVID-19 infection with high accuracy can offer help to healthcare professionals. This study is purposed to explore the effectiveness of artificial intelligence (AI) in the rapid and reliable detection of COVID-19 based on chest X-ray imaging. In this study, reliable pre-trained deep learning algorithms were applied to achieve the automatic detection of COVID-19-induced pneumonia from digital chest X-ray images.

Moreover, the study aims to evaluate the performance of advanced neural architectures proposed for the classification of medical images over recent years. The data set used in the experiments involves 274 COVID-19 cases, 380 viral pneumonia, and 380 healthy cases, which was derived from several open sources of X-Rays, and the data available online. The confusion matrix provided a basis for testing the post-classification model. Furthermore, an open-source library PYCM was used to support the statistical parameters. The study revealed the superiority of Model vgg16 over other models applied to conduct this research where the model performed best in terms of overall scores and based-class scores. According to the research results, deep Learning with X-ray imaging is useful in the collection of critical biological markers associated with COVID-19 infection. The technique is conducive for the physicians to make a diagnosis of COVID-19 infection. Meanwhile, the high accuracy of this computer-aided diagnostic tool can significantly improve the speed and accuracy of COVID-19 diagnosis.

Related articles

Related articles are currently not available for this article.