SARS-CoV-2 Nucleocapsid protein is decorated with multiple N- and O-glycans

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19) started at the end of 2019 in Wuhan, China has spread rapidly and became a pandemic. Since there is no therapy available that is proven as fully protective against COVID-19, a vaccine to protect against deadly COVID-19 is urgently needed. Nucleocapsid protein (N protein), is one of the most abundant proteins in coronaviruses and is a potential target for both vaccine development and point of care diagnostics. The variable mass of N protein (45 to 60 kDa), suggests the presence of post-translational modifications (PTMs), and it is critical to clearly define these PTMs to gain the structural understanding necessary for further vaccine research. There have been several reports suggesting that the N protein is phosphorylated but lacks glycosylation. Our comprehensive glycomics and glycoproteomics experiments confirm that the N protein is highly O-glycosylated and also contains significant levels of N-glycosylation. We were able to confirm the presence of O-glycans on seven sites with substantial glycan occupancy, in addition to less abundant O-glycans on four sites. We also detected N-glycans on two out of five potential N-glycosylation sites. Moreover, we were able to confirm one phosphorylation site. Recent studies have indicated that the N protein can serve as an important diagnostic marker for coronavirus disease and a major immunogen by priming protective immune responses. Thus, detailed structural characterization of the N protein may provide useful insights for understanding the roles of glycosylation on viral pathogenesis and also in vaccine design and development.

Related articles

Related articles are currently not available for this article.