Forecasting daily COVID-19 confirmed, deaths and recovered cases using univariate time series models: A case of Pakistan study

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The increasing confirmed cases and death counts of Coronavirus disease 2019 (COVID-19) in Pakistan has disturbed not only the health sector, but also all other sectors of the country. For precise policy making, accurate and efficient forecasts of confirmed cases and death counts are important. In this work, we used five different univariate time series models including; Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA), Nonparametric Autoregressive (NPAR) and Simple Exponential Smoothing (SES) models for forecasting confirmed, death and recovered cases. These models were applied to Pakistan COVID-19 data, covering the period from 10, March to 3, July 2020. To evaluate models accuracy, computed two standard mean errors such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The findings show that the time series models are useful in predicting COVID-19 confirmed, deaths and recovered cases. Furthermore, MA model outperformed the rest of all models for confirmed and deaths counts prediction, while ARMA is second best model. The SES model seems superior to other models for prediction of recovered counts, however MA is competitive. On the basis of best selected models, we forecast form 4 th July to 14 th August, 2020, which will be helpful for decision making of public health and other sectors of Pakistan.

Related articles

Related articles are currently not available for this article.