Genetic mechanisms of critical illness in Covid-19
Abstract
The subset of patients who develop critical illness in Covid-19 have extensive inflammation affecting the lungs1 and are strikingly different from other patients: immunosuppressive therapy benefits critically-ill patients, but may harm some non-critical cases.2 Since susceptibility to life-threatening infections and immune-mediated diseases are both strongly heritable traits, we reasoned that host genetic variation may identify mechanistic targets for therapeutic development in Covid-19.3
GenOMICC (Genetics Of Mortality In Critical Care, <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://genomicc.org">genomicc.org</ext-link>) is a global collaborative study to understand the genetic basis of critical illness. Here we report the results of a genome-wide association study (GWAS) in 2244 critically-ill Covid-19 patients from 208 UK intensive care units (ICUs), representing >95% of all ICU beds. Ancestry-matched controls were drawn from the UK Biobank population study and results were confirmed in GWAS comparisons with two other population control groups: the 100,000 genomes project and Generation Scotland.
We identify and replicate three novel genome-wide significant associations, at chr19p13.3 (rs2109069, p = 3.98 × 10−12), within the gene encoding dipeptidyl peptidase 9 (DPP9), at chr12q24.13 (rs10735079, p =1.65 × 10−8) in a gene cluster encoding antiviral restriction enzyme activators (OAS1, OAS2, OAS3), and at chr21q22.1 (rs2236757, p = 4.99 × 10−8) in the interferon receptor gene IFNAR2. Consistent with our focus on extreme disease in younger patients with less comorbidity, we detect a stronger signal at the known 3p21.31 locus than previous studies (rs73064425, p = 4.77 × 10−30).
We identify potential targets for repurposing of licensed medications. Using Mendelian randomisation we found evidence in support of a causal link from low expression of IFNAR2, and high expression of TYK2, to life-threatening disease. Transcriptome-wide association in lung tissue revealed that high expression of the monocyte/macrophage chemotactic receptor CCR2 is associated with severe Covid-19.
Our results identify robust genetic signals relating to key host antiviral defence mechanisms, and mediators of inflammatory organ damage in Covid-19. Both mechanisms may be amenable to targeted treatment with existing drugs. Large-scale randomised clinical trials will be essential before any change to clinical practice.
Related articles
Related articles are currently not available for this article.