The effect of salt on the dynamics of CoV-2 RBD at ACE2

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

In this article, we investigate the effect of electrolytes on the stability of the complex between the coronavirus type 2 spike protein receptor domain (CoV-2 RBD) and ACE2, which plays an important role in the activation cascade at the viral entry of CoV-2 into human cells. At the cellular surface, electrolytes play an important role, especially in the interaction of proteins near the membrane surface. Additionally, the binding interface of the CoV-2 RBD - ACE2 complex is highly hydrophilic. We simulated the CoV-2 RBD - ACE2 complex at varying salt concentrations over the concentration range from 0.03 M to 0.3 M of calcium and sodium chloride over an individual simulation length of 750 ns in 9 independent simulations (6.75µstotal). We observe that the CoV-2 RBD - ACE2 complex is stabilized independent of the salt concentration. We identify a strong negative electrostatic potential at the N-terminal part of CoV-2 RBD and we find that CoV-2 RBD binds even stronger at higher salt concentrations. We observe that the dynamics of the N-terminal part of CoV-2 RBD stabilize the protein complex leading to strong collective motions and a stable interface between CoV-2 RBD and ACE2. We state that the sequence of CoV-2 RBD might be optimized for a strong binding to ACE2 at varying salt concentrations at the cellular surface, which acts as a key component in the activation of CoV-2 for its viral entry.

SIGNIFICANCE

A novel coronavirus, coronavirus type 2 (CoV-2), was identified as primary cause for a worldwide pandemic of the severe acute respiratory syndrome (SARS CoV-2). The CoV-2 spike protein is a major target for the development of a vaccine and potential strategies to inhibit the viral entry into human cells. At the cellular surface, CoV-2 activation involves the direct interaction between ACE2 and CoV-2 RBD. At the cellular surface, electrolytes play an important role, especially in the interaction of proteins near the membrane surface. We thus investigate the effect of ion conditions on the interaction of the CoV-2 RBD - ACE2 complex and find stabilizing effects. We speculate that CoV-2 RBD is optimized for strong binding to ACE2 at varying salt concentrations.

Related articles

Related articles are currently not available for this article.