Modelling disease transmission from touchscreen user interfaces
Abstract
The extensive use of touchscreens for all manner of human-computer interactions has made them plausible instruments of touch-mediated disease transmission. To that end, we employ stochastic simulations to model human-fomite interaction with a distinct focus on touchscreen interfaces. The timings and frequency of interactions from within a closed population of infectious and susceptible individuals was modelled using a basic queuing network. Apseudoreproductive number (R) was used to compare outcomes under various parameter conditions. We also expanded the simulation to a specific real-world scenario; namely airport self check-in and baggage drop. Results revealed that the required rate of cleaning/disinfecting of screens to effectively mitigateRcan be inordinately high. This suggests that revised or alternative methods should be considered.
Related articles
Related articles are currently not available for this article.