Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization

This article has 2 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Although neutralizing antibodies against the SARS-CoV-2 spike (S) protein are a goal of COVID-19 vaccines and have received emergency use authorization as therapeutics, viral escape mutants could compromise their efficacy. To define the immune-selected mutational landscape in S protein, we used a VSV-eGFP-SARS-CoV-2-S chimeric virus and 19 neutralizing monoclonal antibodies (mAbs) against the receptor-binding domain (RBD) to generate 50 different escape mutants. The variants were mapped onto the RBD structure and evaluated for cross-resistance to mAbs and convalescent human sera. Each mAb had a unique resistance profile, although many shared residues within an epitope. Some variants ( e.g ., S477N) were resistant to neutralization by multiple mAbs, whereas others ( e.g ., E484K) escaped neutralization by convalescent sera, suggesting some humans induce a narrow repertoire of neutralizing antibodies. Comparing the antibody-mediated mutational landscape in S with sequence variation in circulating SARS-CoV-2, we define substitutions that may attenuate neutralizing immune responses in some humans.

Related articles

Related articles are currently not available for this article.