Long-chain polyphosphates impair SARS-CoV-2 infection and replication: a route for therapy in man

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Anti-viral activities of long-chain inorganic polyphosphates (PolyPs) against severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection were investigated. In molecular docking analyses, PolyPs interacted with several conserved angiotensin-converting enzyme (ACE)2 and RNA-dependent RNA polymerase (RdRp) amino acids. We thus tested PolyPs for functional interactionsin vitroin SARS-CoV-2–infected Vero E6, Caco2 and human primary nasal epithelial cells. Immunofluorescence, qPCR, direct RNA sequencing, FISH and Immunoblotting were used to determine virus loads and transcription levels of genomic(g)RNAs and sub-genomic(sg)RNAs. We show that PolyP120 binds to ACE2 and enhances its proteasomal degradation. PolyP120 shows steric hindrance of the genomic Sars-CoV-2-RNA/RdRP complex, to impair synthesis of positive-sense gRNAs, viral subgenomic transcripts and structural proteins needed for viral replication. Thus, PolyP120 impairs infection and replication of Korean and European (containing non-synonymous variants) SARS-CoV-2 strains. As PolyPs have no toxic activities, we envision their use as a nebulised formula for oropharyngeal delivery to prevent infections of SARS-CoV-2 and during early phases of antiviral therapy.

Related articles

Related articles are currently not available for this article.