Comparing Machine Learning Algorithms for Predicting ICU Admission and Mortality in COVID-19

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

As predicting the trajectory of COVID-19 disease is challenging, machine learning models could assist physicians determine high-risk individuals. This study compares the performance of 18 machine learning algorithms for predicting ICU admission and mortality among COVID-19 patients. Using COVID-19 patient data from the Mass General Brigham (MGB) healthcare database, we developed and internally validated models using patients presenting to Emergency Department (ED) between March-April 2020 (n = 1144) and externally validated them using those individuals who encountered ED between May-August 2020 (n = 334). We show that ensemble-based models perform better than other model types at predicting both 5-day ICU admission and 28-day mortality from COVID-19. CRP, LDH, and procalcitonin levels were important for ICU admission models whereas eGFR <60 ml/min/1.73m2, ventilator use, and potassium levels were the most important variables for predicting mortality. Implementing such models would help in clinical decision-making for future COVID-19 and other infectious disease outbreaks.

Related articles

Related articles are currently not available for this article.