The N-glycosylation sites and Glycan-binding ability of S-protein in SARS-CoV-2 Coronavirus
Abstract
The emerging acute respiratory disease, COVID-19, caused by SARS-CoV-2 Coronavirus (SARS2 CoV) has spread fastly all over the word. As a member of RNA viruses, the glycosylation of envelope glycoprotein plays the crucial role in protein folding, evasing host immune system, invading host cell membrane, even affecting host preference. Therefore, detail glyco-related researches have been adopted in the Spike protein (S-protein) of SARS2 CoV from the bioinformatic perspective. Phylogenic analysis of S-protein sequences revealed the evolutionary relationship of N-glycosylation sites in different CoVs. Structural comparation of S-proteins indicated their similarity and distributions of N-glycosylation sites. Further potential sialic acid or galactose affinity domains have been described in the S-protein by docking analysis. Molecular dynamic simulation for the glycosylated complexus of S-protein-ACE2 implied that the complicate viral binding of receptor-binding domain may be influenced by peripheric N-glycans from own and adjacent monoers. These works will contribute to investigate the N-glycosylation in S-protein and explain the highly contagious of COVID-19.
Related articles
Related articles are currently not available for this article.