Exploring drugs and vaccines associated with altered risks and severity of COVID-19: a UK Biobank cohort study of all ATC level-4 drug categories
Abstract
Background
COVID-19 is a major public health concern, yet its risk factors are not well-understood and effective therapies are lacking. It remains unclear how different drugs may increase or decrease the risks of infection and severity of disease.
Methods
We studied associations of prior use of all level-4 ATC drug categories (including vaccines) with COVID-19 diagnosis and outcome, based on a prospective cohort of UK Biobank(UKBB). Drug history was based on general practitioner(GP) records. Effects of prescribed medications/vaccinations on the risk of infection, severity of disease and mortality were investigated separately. Hospitalized and fatal cases were categorized as ‘severe’ infection. We also considered different study designs and conducted analyses within infected patients, tested subjects and the whole population respectively, and for 5 different time-windows of prescriptions. Missing data were accounted for by multiple imputation and inverse probability weighting was employed to reduce testing bias. Multivariable logistic regression was conducted which controls for main confounders.
Results
We placed a greater focus on protective associations here, as (residual) confounding by indication and comorbidities tends to bias towards harmful effects. Across all categories, statins showed the strongest and most consistent protective associations. Significant protective effects against severe infection were seen among infected subjects (OR for prescriptions within a 12-month window, same below: 0.50, 95% CI:0.42-0.60), tested subjects (OR=0.63, 0.54-0.73) or in the general population (OR=0.49, 0.42-0.57). A number of top-listed drugs with protective effects were also cardiovascular medications, such as angiotensin converting enzyme inhibitors, angiotensin receptor blockers, calcium channel blocker and beta-blockers. Some other drugs showing protective associations included biguanides (metformin), estrogens, thyroid hormones and proton pump inhibitors, among others.
Interestingly, we also observed protective associations by numerous vaccines. The most consistent association was observed for influenza vaccines, which showed reduced odds of infection (OR= 0.73 for vaccination in past year, CI 0.65-0.83) when compared cases to general population controls or test-negative controls (OR=0.60, 0.53-0.68). Protective associations were also observed when severe or fatal infection was considered as the outcome. Pneumococcal, tetanus, typhoid and combined bacterial and viral vaccines (ATC code J07CA) were also associated with lower odds of infection/severity.
Further subgroup and interaction analyses revealed difference in protective effects in different clinical subgroups. For example, protective effects of flu and pneumococcal vaccines were weaker in obese individuals, while we observed stronger protective effects of statins in those with cardiometabolic disorders, such as diabetes, coronary artery disease, hypertension and obesity.
Conclusions
A number of drugs, including many for cardiometabolic disorders, may be associated with lower odds of infection/severity of infection. Several existing vaccines, especially flu vaccines, may be beneficial against COVID-19 as well. However, causal relationship cannot be established due to risk of confounding. While further studies are required to validate the findings, this work provides a useful reference for future meta-analyses, clinical trials or experimental studies.
Related articles
Related articles are currently not available for this article.