An interactive viral genome evolution network analysis system enabling rapid large-scale molecular tracing of SARS-CoV-2

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Comprehensive analyses of viral genomes can provide a global picture on SARS-CoV-2 transmission and help to predict the oncoming trends of pandemic. This molecular tracing is mainly conducted through extensive phylogenetic network analyses. However, the rapid accumulation of SARS-CoV-2 genomes presents an unprecedented data size and complexity that has exceeded the capacity of existing methods in constructing evolution network through virus genotyping. Here we report a Viral genome Evolution Network Analysis System (VENAS), which uses Hamming distances adjusted by the minor allele frequency to construct viral genome evolution network. The resulting network was topologically clustered and divided using community detection algorithm, and potential evolution paths were further inferred with a network disassortativity trimming algorithm. We also employed parallel computing technology to achieve rapid processing and interactive visualization of >10,000 viral genomes, enabling accurate detection and subtyping of the viral mutations through different stages of Covid-19 pandemic. In particular, several core viral mutations can be independently identified and linked to early transmission events in Covid-19 pandemic. As a general platform for comprehensive viral genome analysis, VENAS serves as a useful computational tool in the current and future pandemics.

Related articles

Related articles are currently not available for this article.